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Abstract 

This paper explores the relationship between discounting and complicated behavior in dynamic 
optimization models. An inverse relationship between the discount factor of a dynamic optimization 
model and the topological entropy of the corresponding optimal policy function is established. For 
an aggregative model, this generalizes a result obtained by Montrucchio and Sorger. The 
generalization makes it possible to apply directly the results developed by Block, Guckenheimer, 
Misiurewicz and Young on the computation of the topological entropy of dynamical systems to 
obtain upper bounds on the discount factor necessary for the occurrence of topological chaos in 
aggregative dynamic optimization models. 0 1998 Elsevier Science B.V. 

JEL classl$cation: C6 1; E32; 04 I 

Keywords: Optimization; Dynamics; Discounting; Entropy 

1. Introduction 

In a standard aggregative dynamic optimization framework (Ln,u,S), where 0 is the 
transition possibility (technology) set, u is a (reduced form) utility function defined on 
this set, and O<S<l is a discount factor, the relation between the magnitude of the 
discount factor and the extent of the complicated behavior generated by the 
corresponding (optimal) policy function has been a topic of extensive study. 
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Boldrin and Montrucchio (1986) showed that any twice continuously differentiable 
function can be a policy function of an appropriately defined dynamic optimization 

model. However, when the C* function was taken to be the logistic map (h(x) =4x( 1 -x) 
for x l [0,1]), which is well known for exhibiting complicated behavior, the dynamic 
optimization model for which the logistic map was the policy function, was seen to have 
an extremely small discount factor (about 0.01). Subsequently, Sorger (1992a) showed 

that if the policy function of any dynamic optimization model is the logistic map, then its 
associated discount factor must be smaller than 0.5. 

These results suggested that substantial discounting might be necessary to obtain 
complicated (or ‘chaotic’) optimal behavior. This was confirmed by Sorger (1992b) when 

he showed, using the theory of stochastic dominance, that if any dynamic optimization 
model (fl,u,@ exhibits a period-three cycle, then the discount factor, S, must satisfy: 

S < (x& - I)/2 % 0.618. In subsequent work, Sorger (1994) refined the above bound to 
6~0.5479. The bound was further refined to 

6 > [(ti - 1)/2]* = 0.3819 

in Mitra (1996), Nishimura and Yano (1996). Furthermore, the bound in Eq. (1) was 
shown to be ‘exact’ in the sense that whenever S < [(d - 1)/2]*, one can construct a 
transition possibility set, Q, and a reduced form utility function, U, such that the dynamic 

optimization model (L?,u,@ has an optimal program exhibiting a period three cycle. 
A period three cycle is a special case of what is known as ‘topological chaos,’ which 

occurs whenever there is a periodic cycle of a period not equal to a power of 2. Thus, if 
we focus on the existence of any periodic point of period q=np, where n>l is an odd 
integer and ~=2~, with k a non-negative integer, it can be shown (see Mitra (1996)) that, 
combining Eq. (1) with the “Sarkovskii order”‘, the following bound on the discount 
factor can be obtained: 

s < [(Js- 1)/2]‘@ 

All these results certainly indicate a close relationship between discounting and 
complex optimal behavior. However, this relationship could be made more precise if we 
had a convenient numerical measure of complicated behavior. From the topological point 

of view, such a numerical measure is the ‘topological entropy’ of a dynamical system. 
Thus, one could proceed to examine whether the upper bound on the discount factor goes 
on decreasing as the extent of complicated optimal behavior goes on increasing. This 

approach was pioneered by Montrucchio (1994) who established (under a strong 
concavity assumption on the utility function) that 

where A is a compact, invariant set contained in the interior of the ‘state space’ of the 
dynamic optimization model, and $(h,A) is the topological entropy on the set A of the 
policy function, h, when the discount factor is 6. Montrucchio and Sorger (1996) have 
shown that the inequality holds even when the strong concavity assumption on the utility 

’ For this, and other basic concepts and results on chaotic dynamical systems, see, for example, Block and 
Coppel (1992). Day (1994), Devaney (1989). 
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function is replaced by a relatively mild strict concavity assumption on the utility 
function. 

In this paper, we do three things. First, we establish the Montrucchio-Sorger result 

(Eq. (3)) by using what I have called the “value-loss approach” to minimum impatience 
problems. Focusing on ‘value-losses’ (that one suffers by deviating from certain price- 
supported activities) has been the cornerstone of the approach of McKenzie (see 
McKenzie (1986) for a comprehensive survey) to problems of ‘turnpike’ theory. It 
appears to be a natural concept to use for the study of complicated optimal behavior as 

well, and the inequality (Eq. (3)) is seen to rest firmly on a version of the well-known 

‘value-loss lemma,’ which was introduced to turnpike theory by Radner (1961), and 
which has occupied center-stage in this literature thereafter. 

Second, under an additional assumption of ‘bounded steepness’ of the utility function 
(see Section 4 for details) we extend the Montrucchio-Sorger result to establish that 

6 < l/e@h,x) (4) 

where X is the compact state space itself. A problem in applying the Montrucchio-Sorger 
result to obtain discount factor restrictions for topological chaos is that, in general, given 
a policy function it is difficult to identify compact invariant sets in the interior of the state 

space. There is, of course, no such difficulty in applying formula Eq. (4). 
Third, I explore the implications of result Eq. (4) for periodic optimal programs. The 

concept of topological entropy has been thoroughly studied in the theory of dynamical 
systems, and powerful methods have been developed for computing the topological 
entropy of dynamical systems, exhibiting periodic behavior, by Block et al. (1980). We 
use these results to show (among other things) that the inequality (Eq. (4)) yields the 
discount factor restriction: S 5 (& - 1)/2 for period three cycles. 

2. Chaos 

Let I be a compact interval in %, the set of reals. Letf:Z+I be a continuous map of the 
interval I into itself. The pair (Z$) is called a dynamical system; I is called the state space 

and f the law of motion of the dynamical system. 
We write f’(x)=x and for any integer n> 1, y(x) = f[fn-’ (x)]. If xG, the sequence 

T(X) = VYx)]o m is called the trajectory from (the initial condition) x. The orbit from x is 
the set y(x) = {y: y = f”(x) for some IZ 20). 

A point XEI is a fired point off ifflx)=x. A point XEZ is called a periodic point off if 

there is k> 1 such thatfk(x)=x. The smallest such k is called the period of x. (In particular, 
if XEI is a fixed point off, it is periodic with period 1). If XEI is a periodic point with 
period k, we also say that the orbit of x (or trajectory from x) is periodic with period k. 

A finite set EcA is called (n,&)-separated (n=1,2,. . . and E>O) if for every x, y&Y, xfy, 
there is O<k<n such that 1 fk(x) -fk(y) I> E. Let s(n, E) denote the maximal cardinality 
of an (n,E)-separated set. We define 

&V,A) = ;~lsup(l/n)logs(n.~) 
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and the topological entropy* off as 

@V,A) = !I_m,&V,A). 

We will say that a dynamical system (IJ) exhibits topological chaos iffhas a periodic 
point whose period is not a power of 2. This definition follows Block and Coppel (1992). 

3. Dynamic optimization 

3.1. The model 

The framework is described by a triplet (L&6), where 0, a subset of ‘%+ x %+, is a 
transition possibility set, u: 0 + % is a utility function defined on this set, and S is the 
discount factor satisfying 0<5< 1. 

The transition possibility set describes the states ZE’%+ that it is possible to go to 

tomorrow, if one is in state xc‘%+ today. We define a correspondence l?%+--+%+ by 
r(x)=(y~R+: (x,y) E 0) for each x E !R+. 

A program {x,}: from x E ‘!R+ is a sequence satisfying 

x0 =xand(x,,x,+t) E G for t 2 0 

If one is in state x today and moves to state z tomorrow (with (x,z) E 0) then there is an 
immediate utility generated, measured by the utility function, u. The discount factor, S, is 
the weight assigned to tomorrow’s utility (compared to today’s) in the objective function. 

The following assumptions are imposed on R and U: 

(A.l) (i) (0,O) E 0, (ii) (0,~) E R implies z =O. 

(A.2) R is (i) closed, and (ii) convex. 

(A.3) There is < >O such that (x,z) E 0 and x > < implies z < x. 

(A.4) If (x,z) ER and x’ > x, O< z’ 5 L then (J.‘,z’) E 0. 

Clearly, we can pick O<<<[, such that if x>< and (x,z) E R, then za. It is 
straightforward to verify that if (x,z) E Q, then zs max (<,x). It follows from this that if 
{x,},” is a program from x E %+, then x, 5 max (<,x) for t 20. In particular, if x2<, then 
xt 5 C for t>O. This leads us to choose the closed interval, [O,<] as the natural state space 
of our model, which we will denote by X. We denote the interval [O,<] by Z 

The following assumptions are imposed on the utility function, U: 

(AS) u is concave on R; further if (x,z) and (x’,z’) are in Q, and x # x’, then for every 

0 < x < 1, u(X(x, z) + (1 - X)(x’, z’)) > XU(X, z) + (1 - X)u(x’, z’). 

(A.6) u is upper semi-continuous on L?. 

(A.7) If x, x’EY, (x,z)~Q,x’Zx and OIz’Iz, then u(x’,z’)>u(x,z). 

* The formal definition of topological entropy was given by Adler et al. (1965). Bowen (1971a) provided the 
more ‘operational’ definition (which we use here). In our context, the two definitions are equivalent; for a proof, 
see Bowen (1971b). 
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We will refer to a triplet (0&i) satisfying (A.l)-(A.7) as a dynamic optimization 

model. 
A program {f,}: from x >O is an optimal program if C,” G’u(x,,x,+i) 5 

Cr S’u(&,.?,+i) for every program {x,},” from x. Under (A.l)-(A.7), there is a unique 

optimal program from every x E ‘%+. 

3.2. Value and policy functions 

The valuefunction V ‘%+ + % is defined by V(x) = c,” 6’u(&,x,+1) where {jc,}: is 
the optimal program from x E %+. The policy function h: !R+ + %+ is defined by 
h(x) = ii where {it}7 is the optimal program from x E %+. 

The properties of the value and policy functions can be summarized in the following 
result. This is based on Dutta and Mitra (1989) and Stokey et al. (1989). 

Proposition 1. (i) The value function V is strictly concave and continuous on %+ 

and non-decreasing on Y Further, V is the unique continuous function on Y E [O&l 

which satisfies the functional equation of dynamic programming: V(x) = 

max,,i-(,)[u(x,~) + WY)]. 
(ii) The policy function h satisfies the following property: for each x E %+, h(x) is the 

unique solution to the constrained maximization problem: MaxYEr+) [u(x, y) + W(y)]. 

Further, h is continuous on %+. 

In view of the definition of the policy function h, the optimal program from VEX is 

the trajectory {h’(x)},” g enerated by the policy function. Thus, an optimal program 
from VEX can be called periodic (with period k) if x is a periodic point of h (with 

period k). 

3.3. Price characterization of optimal@ 

Optimality can be characterized in terms of dual variables or shadow prices. The basic 
result of the theory, describing this characterization, can be stated as follows. (A full 
discussion can be found in Weitzman (1973) and McKenzie (1986).) 

Proposition 2. (a) If {xl}a Do is an optimal program from x E X and x >O, and there is 

(x, y) E Q with y > 0 then there is a sequence {pl}F of non-negative prices such that 

1. G’V(x,)-ptx, > SW(x)-p& for all x>O, t>O 

2. fi’u(x,J,+~) + pr+lxr+l -p& S’u(x,y)+p,+ly-p&for all (x,y)EQ t>O 
3. lim,,, ptxt = 0 

@) If {x1)0 O” is a program from x LO, and there is a sequence {pl}r of non-negative 
prices such that, (ii) and (iii) above are satisfied, then {xt}y is an optimal program 
from x. 

If {x,}: is a program from x 20, and (P~}~ O” is a non-negative sequence of prices 

satisfying (i), (ii) and (iii) of Proposition 7(a), we will say that the program {xt}r is price 
supported by {pr}r. In this case, we refer to {p,}; as a sequence of present-value prices, 
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and associate with it a sequence {P,},” of current-value prices defined by P,=(p,JS’) 

for t>O. 

If the value function has finite steepness at zero, it is possible to choose the current 

value prices associated with any optimal program to be uniformly bounded above, a result 
which we state in Proposition 3 below (the proof is in the mathematical Appendix A). To 

this end, normalize u(O,O)=O, and note that V(0) =O. Then for all x in X, (x,0) is in R 
(by (A.4)) and u(c,O)>u(x,O) 20 by (A.7). Further, for all x in X with ~0, V(x)>0 

and [V(x)/x] decreases in x by Proposition 1. We define p s lim,,a5 [V(x)/x]. In the 
above definition, p can be infinite. If p happens to be finite, we say that V has ‘finite 

steepness.’ 

Proposition 3. Let (L’,u,6) be a dynamic optimization model. Suppose there is 

(x, j) E R such that x E X and j > 0. Further suppose that p = lim,,u+ [V(x)/x] < co. If 

{x,}: is an optimal program from any xEX, there is a price support {pr}F of {xr}; such 

that P,=(pjS’)<p for t>O, where p is given by /3 E max(p, [u(<, 0) - u(.?,j) + px]/Sy). 

3.4. The value-loss method 

The value-loss method is based on the observation that at the prices supporting an 
optimal program, there is no activity which yields a higher ‘generalized profit’ at any date 
(value of utility plus value of terminal stocks minus value of initial stocks at that date) 
than the activity chosen along the optimal program at that date. In other words, there are 
no arbitrage possibilities available at the supporting prices. 

This observation leads to a basic tool for analyzing minimum impatience results (see 
Mitra (1996) for a proof) which we state in the following proposition. 

Proposition 4. Let (f&u,??) be a dynamic optimization model. Suppose {xt}r is an 

optimal program with price support {pr}:, and {yr}r is an optimal program with price 

support {qr)r. Denoting (p,/6*) by P, and (q/fir) by Q, for t 20, we have 

1. ~(P,+I - Q~+I )(Y,+I - x1+1) i (P, - Qt)(yt - xt) for t20 
2. (P, - Q,)(y, - xI) 2 0 for t>O 

Furthermore, if y, # xr from some t, then the inequalities in (i) and (ii) are strictfor that t. 

4. On a relationship between discounting and complexity 

4.1. The Montrucchio-Sorger result 

If we consider topological entropy to be an appropriate measure of ‘complexity’ of a 
dynamical system, then a natural way to study the relationship between discounting and 
complicated optimal behavior is to find the relationship between the discount factor of a 
dynamic optimization model and the topological entropy of its policy function. This is the 
approach taken in Montrucchio (1994), where he establishes (under strong concavity 
assumptions on the utility function) that if (L?,u,S) is a dynamic optimization model with 
policy function h, A is a compact, invariant set contained in the interior of X, and $(h,A) 
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is the topological entropy of h on A, then the discount factor, S, is related to the 
topological entropy by the inequality 

6 < e-@@V‘C (5) 

Subsequently, it has been shown in Montrucchio and Sorger (1996) that the strong 

concavity assumption on the utility function can be dispensed with in deriving the 

inequality (Eq. (5)). In particular, it follows from their result that inequality (Eq. (5)) 
holds under the standard assumptions used in Section 3 of this paper. 

In this section, we will show how the relationship (Eq. (5)) (which I refer to henceforth 
as the Montrucchio-Sorger result) can be derived using the value-loss approach, thereby 

providing a unified view of the minimum impatience results obtained in the literature on 
chaotic optimal behavior. 

In order to establish (Eq. (5)), we need two preliminary results. To describe the results, 
define Z=X- (0)) and let A be a compact invariant set contained in Z. Given any x and y 
in A, let {P,}; and {ql}r be the price sequences supporting the optimal programs from x 

and y respectively. Denote by {P,}; and {Q,},” the ‘current’ price sequences 
corresponding to {pt}F and {qr}r respectively, and to simplify notation denote PO by 
P and Qe by Q. 

We know from Proposition 4 that (P-Q)(y--x)>O and this inequality is strict when 
yfx. We need to establish, first, that there is p>O, such that for all x,y E A, 

(P-Q)cY-x)<plx-~1. n is amounts to establishing a uniform bound on the initial period 

supporting prices associated with optimal programs starting from initial stocks in A. We 
also need to establish that given any E>O, there is a(&)>0 such that x,y~A and Ix-yl>c 

imply (P-Q)(Y-x)>(Y(E). One recognizes this, of course, as a version of the well-known 
‘value-loss lemma’ appearing prominently in the turnpike literature since Radner (1961). 

We now proceed to state these two results formally; proofs are provided in the 
mathematical Appendix A. 

Lemma 1. Let A be a compact invariant set contained in Z. There is p>O such that for 

all x,y in A, (P-Q)(y-x)<plx-yl. 

Lemma 2. Let A be a compact invariant set contained in Z. For every ~-0, there exists 

a(~)>0 such that x,y~ A and Ix-yl>~ imply (P-Q)(y-~)>a(&). 

We are now in a position to state and prove (a version of) the Montrucchio-Sorger 
result. 

Theorem 1. Let (f2,uJ) be a dynamic optimization model and let h: X-+X be its policy 

function. Assume that A is a compact subset of X which is contained in Z, and which is 

invariant under h. Then, 6<e-*l”hA’. 

Proof. Let n be a positive integer, E a positive real number, and B an @,&)-separated 
subset of A. For every x,y in B with x # y, there exists tE{ O,l,. . .,n- 1 ] such that 
[h’(x)-h’(y)l>e. Using Proposition 4, we have S’ (Pt - Qr) (y, - xt ) < (P - Q) (y - x) 

where xt = h’(x), yf = h’(y), P = PO and Q = QO. Using Lemma 1, we get 
(P-Q)(y-x)<plx-yl. Using Lemma 2 and IX,-_Y,~>E, we get (Pr-Qt)(y-x,)&(~) since 
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(x,, x1+,,. .) is an optimal program from x, with current value supporting prices (P, 

P l+l,. . .), and a similar remark applies to y, and Qt. 
Combining the above three inequalities, we get S’ a(e)<p]x-y] and since t I n- 1, and 

0<5<1, S” a(&)lp<]x-y]. Since BcAcX, where X = [O,<], and B is an (n,&)-separated set, 
the number of elements of B must satisfy the inequality: Card B < [~</6”a(&)]+ 

1 < [~/~</P”(Y(E)]. This yields 

&(h,A) = limsup( l/n)log[2&/S”o(&)] =limsup[( l/n)log[2&/cr(E)] +( l/n)log( l/S)“] 
n+m n-m 

5 limsup( 1 /n)log( 1 /S)” = log( 1 /S) 
n-oo 

This implies that $(h, A) = lim,,o &(h,A) 5 log( l/S), and yields e”h”‘l(llS). 

Remark. Note that if A is a compact subset of X which is contained in the interior of X, 
and which is invariant under h, then, by Theorem 1, we have &e-@“hA’ which is the 

Montrucchio-Sorger result for our aggregative framework. 

4.2. Discounting and topological entropy 

A possible difficulty in applying Theorem 1 of the previous section is in identifying 

suitable compact subsets of 2 which are invariant under h. Note that while X itself is 
clearly a compact set which is invariant under h, the Montrucchi*Sorger result does not 

imply that 

and it is clear from our method of proof (and also from the proofs of Montrucchio (1994) 
and Montrucchio and Sorger (1996)) that this is not an easy extension of Theorem 1. 

If, for example, h is the well-known logistic map (h(x) =4x(1-x) for x EX K [O,l]), 
then h is topologically transitive; that is, for any pair of open sets Ui, r/, in X, there exists 
a positive integer k such that hk(U,) n U2 is non-empty). For a proof of this fact, see 

Devaney, 1989 (~51). Then, by Lemma 37 of Block and Coppel, 1992 (p.l55), every 
proper closed subset of [O,l], which is invariant under h, has empty interior. That is, these 
sets are ‘thin,’ and would not include, for instance, any open intervals. They would 

include finite sets, for instance, those consisting of the points of a periodic cycle (of 
periodicity exceeding l), but clearly the topological entropy of h on such sets is zero. 
Thus, compact subsets of Z which are invariant under h, might not be the sets that we 
would necessarily want to focus on. 

In this section, we show under an additional assumption, how the formula (Eq. (6)) can 
be obtained. The extra assumption we use for this purpose involves ‘bounded steepness’ 
of the utility function, a concept introduced to the optimal growth literature in Gale 
(1967). 

We now proceed formally as follows. Recall from Section 3 that. we normalized 
u(O,O) =O, so V(0) =O. Then for all XEX, (x,0) is in ti (by (A.4)) and u(x,O) >O by (A.7). 
Further, [u(x,O)/x] decreases in x on X, by (A.5). Our additional assumption is: 

(A.8) (r = xliy+[u(x, 0)/x] < cc 
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From this point onward, we refer to a triplet (0,uJ) as a dynamic oprimization model if it 
satisfies assumptions (A.l)-(A.8). 

Theorem 2. Let (f2,uJ) be a dynamic optimization model and let h: X+X be its policy 
function. Then 

Proof. Note, first, that if h(x)=0 for all VEX, then clearly $(h,X) =0 and (Eq. (7)) holds 

trivially. Thus we concentrate on the situation where there is some i E X such that 

h(i) > 0. Recall from Section 3 that we defined: p = lim,,o+ [V(x)/x]. We consider two 
cases: (i) p<cc (ii) p=cc. 

Case (i) [p<oo] In this case, defining /J as in Proposition 3, if {x1},” is any optimal 
program from XEX, then there is a price support {p,},” of {x1},” such that P,-@Jfi’)<P 
for t20. Then, we can follow the proofs of Lemma 1, Lemma 2 and Theorem 1 to obtain 

(Eq. (7)), replacing A with X in the appropriate steps of the proofs. 

Case (ii) [p = CO] We can choose O<a<<, such that [V(x)/x]>[a/( l-S)] for Ooc<a 
where CJ is given by (A.8). 

We claim, first, that h(x)>x for Ooc$z. Suppose, on the contrary that there is some 

O-la, for which h(x)<x. Then, using Proposition 1, V(x) = u(x,h(x))+SV(h(x))< 

u(x,h(x))+N(x), so that V(x)<u(x,h(x))l(l-6). Using (A.7), u(x,h(x))<u(x,O), and we get 
[V(n-)fxl<[u(x,O)lx]l(l -S)la/( I-6) a contradiction which establishes the first claim. 

Second, we claim that h(x)>0 for OcxlC. Suppose, on the contrary, there is some 
0~ < C such that h(x)=O. Then {x,}? given by (x,0,0,. . .) is the optimal program from x. 

Then Proposition 2 can be used to get a price support {P,}: of {x~},“. Denoting (p,/S’) by 
P, for t20, we have V(x,)-P, x,LV(y)-Ply for all ~20. Since x,=0, and V(O)=O, we get 
V(y)<P, y for all y>O. But, by letting y-+0, we then contradict the fact that p=cu. This 
establishes the second claim. 

Since h is continuous on [a,<], there is b’>O such that 

h(x) > b’ for all x E [a, C] (8) 

Define b=min [a,b’] and A=[b,<]. Then, we claim that A is a compact, invariant set. Since 
compactness is clear, we proceed to check the invariance property. We have either (I) 
b=a, or (II) bfa. If b=a, then b’> u=b, and (Eq. (8)) implies that h(x)>b for xE[b,C]. If 
bfa, then b=b’<a, and (Eq. (8)) implies that h(x)>b for all xe[u,C]. For xg[b,u), we have 
h(x)>x, and so h(x)Lb. Thus for all xE[b,C], we get h(x)>b. Since h(x)< < for all xE[b,<], 

we have established that A=[b,<] is an invariant set. 
If OUC< b, then there is some T large enough such that hT(x)EA and so h’(x)EA for t>7’. 

If XEA, then h’(x)EA for t>O. If x=0, then h’(x) =0 for t>O. 
Define C = nzo h’(X). Then C is compact and invariant, and C=CIUC~ where 

Cl = I-$!, h’(A) and CT= (0). Clearly, C, and C2 are compact, invariant sets. 
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Now, $~(&f)=$(h,C) by Corollary 4.1.8, (Alseda et al. (1993) (p.196)). Further, 
$(h, C,)=O, since from the definition of topological entropy, if W is any finite set, then 

the topological entropy of any map g: W--, W is zero. Thus, using Lemma 4.1.10, (Alseda 
et al. (1993) (p.197)) $(h,C) =$(h,Ct). Summarizing, we have $(h,X)=$(h,Ct). 

Since C, C A, we note that Ct is a compact, invariant set in Z, and so by Theorem 1, 

6 < K~‘@,~I). Since $(h,Ct)=$(h,X), we have established (Eq. (8)). - 

4.3. Discounting and metric entropy 

Topological chaos may not be observable, so topological entropy might not be an 
appropriate measure of the complexity of a dynamical system. In this context, a natural 
alternative measure to consider is the metric (or measure-theoretic) entropy of a 
dynamical system, and to conclude that the system exhibits complicated behavior when 

the metric entropy is positive. 
Interestingly, if we adopt this point of view, our analysis so far is still seen to be 

extremely useful in studying the relation between discounting and complicated behavior 
of a dynamical system. This is clear by noting the basic relationship between topological 
and metric entropy.3 Let (f,l) be a dynamical system (as in Section 2), and M(f,l) be the 
set of all f-invariant probability measures on the Bore1 sets of I. If z&4(fl), then 

@,VJ)lWL). 

Theorem 3. Let (fL?,u,S) be a dynamic optimization model and let h: X+X be its policy 

function. If p is an h-invariant probability measure on the Bore1 sets of X, then 

6 < ,/&X) (9) 

Remark. Nishimura et al. (1994) have provided an example in which for every O<kl, 
there is a dynamic optimization model (n,u,s) such that the policy function, hn, exhibits 
ergodic chaos. However, as they have noted, the metric entropy of h6 converges to zero as 
6 converges to 1. Theorem 3 shows that this is true not only for that example but in 
general; that is, if (Q,, u,, 6,) is a sequence of dynamic optimization models with policy 
functions h,Js =1,2,. .), and S,Y+l as s+cc, then the metric entropy of h,Y must converge 
to zero at ~tcc. 

5. Discount factor restrictions for topological chaos 

In this section, we demonstrate the usefulness of the Montrucchio-Sorger result, by 
deriving a number of implications of it. Specifically, we show how the result can be used 
to derive discount factor restrictions for policies exhibiting topological chaos. 

’ For the definition of metric entropy, as well as this result, see Goodwyn (1969). The result of Goodwyn is 
applicable to more general dynamic systems than ours. It turns out that the topological entropy, Q,(f,I), is the 
supremum over all &MCf,I) of the metric entropies @,t’j,I). This was first established by Dinaburg (1970). For a 
discussion of these results in the most general setting, see Goodman (197 I). 
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The basic technical background that we need to study discount factor restrictions for 

periodic programs is a result due to Block et al. (1980) which provides a formula for the 
topological entropy of any continuous function exhibiting a periodic point with period not 
equal to a power of 2. We state this result here for ready reference. 

Proposition 5. L.etf:I-+I be a continuous map with an orbit of period q=np where n>l 
is odd and ~=2~ with k>O. Then $Q)>(log X,)/p where A, is the unique positive root of 

the equation ~~--2z~-~- 1 =O. 

Combining Proposition 5 with Theorem 2, we obtain the following result. 

Theorem 4. Let (.fl,u,S) be a dynamic optimization model which exhibits a periodic 

program of period q=np where n>l is odd and p =2k with k 20. Then 6 2 1 /X!,lp where 

A, is the unique positive root of the equation z”-2z”-2-1=0. 

Given Theorem 4, all one needs to obtain suitable discount factor restrictions for policy 
functions which exhibit periodic programs of positive topological entropy (and, therefore, 
which exhibit topological chaos) is an accurate calculation of the (unique) positive root of 
the polynomial equation: z”-2~“~‘- I=O. 

We illustrate this point with the simplest case, where the dynamic optimization model 
(0,u,6) exhibits a period three cycle. Here, of course, n=3, p=l (so k=O) and q=np=3. 

The relevant polynomial is: z3-2z- l=O. It is easy to verify that X3 = [v% + 1]/2 is 
the unique positive root of this polynomial. Thus, the discount factor restriction for a 

period three cycle, by applying Theorem 4, is 61 1/X3. Now, the magnitude (l/X3) can be 
written as (Js - 1)/2, and this leads to the following Corollary, which was first 
established by Sorger (1992b) by using entirely different methods. 

Corollary 1. Let (f2,u,6) be a dynamic optimization model, which exhibits a period 
three cycle. Then 6 5 (a - 1)/2. 

We can also use Theorem 4 to obtain an upper bound on the discount factor, 6, that 
must be satisfied in order that a dynamic optimization model (0,uJ) yields a periodic 
optimal program of odd period greater than one. 

Corollary 2. Suppose (L’,u,S) is a dynamic optimization model with policy function, h. 

Let n>l be any odd integer. If h has a periodic orbit of period n, then S < (l/d). 

Proof. Define g(z)=zn-2zn-2- 1 for ~20. For z = fi,g(z)/z”-2 = z2 - 2- 

(l/z”-‘)<z2-2=0. And if z L then z2 - 2 - (l/z”-*) > z2 - 2- 

{ l/(J?1)“-2} 2 2 + {I/(&)“-~} - 2 - {l/(fi)“-*} = 0. Thus we know that 

Jz < x, < \/2 + I/(@-*} 

Using Theorem 4, with k=O, and (Eq. (lo)), we get 6 < (1 /a). 

(10) 
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More generally, Proposition 5, Theorem 2, and (Eq. (10)) can be used to obtain upper 

bounds on discount factors that must hold in order that optimal programs be periodic with 
period q=np where n>l is odd and ~=2~ with k>O. 

Corollary 3. Suppose (.Q,u,b) is a dynamic optimization model with policy function, h. 

Let n >l be an odd integer, k be a non-negative integer and q=n2k. If h has a periodic 

orbit with period q, then 6 < (I/&)(“*‘). 
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Appendix A 

Mathematical appendix 

Proof of Proposition 3. Consider, first, any optimal program {xr}r from x in X, with 
x>O. We consider two cases: (i) x,>O for all t>O; (ii) x,=0 for some t. 

In case (i), using Proposition 2(i), V(x,)-P, x, 20 for t>O, so that P, 5 [ V(x,)lx,] 5 p < p 
for t>O. 

In case (ii), let T be the first period for which xt =O. Then r> 1, x,>O for t=O,. . .,T- 1, 
and x,=0 for t>T. By the argument used in case (i), P,<p for t=O,. .,T- 1. For t=T, using 
Proposition 2(ii), we get u(xr_t , 0) - PT-IXT_I > ~(2, j) + SPTj - PT-,.?, so that 

PT i [UC<> 0) - u&j’) + pi]/@ 5 p. 

If P, IPT for all t>T, then we are done. Otherwise, let C-T be the first period for which 
P, >Pr. Then P,_I < PT < P, and using Proposition 2(ii), we get for all (n,z) EQ, 
O>u(x,z) + SP,Z-P,_~X 2 u(x,z) + SP,_,z-P,-,x. Also, since x,- ,=O, we have 
O>V(x)-P,+ix for all x20. Thus, defining Pi = P, for t=O,. .,r-1 and Pi = P,_l for 
t>T, and pi = S’P: for t>O, we see that {pi}: provides a price support to {x1},“, and 
Pi 5 # for t>O. 

It remains to obtain a price support for the optimal program {O},” from 0, with 
bounded current value prices. Since p<oo, we have V’+(O) = p < 00. Thus, by concavity 
of V, we have V(O)-PO2 V(x)-Px for all ~20, where P = V:(O). Then, by the induction 
argument of Weitzman (1973) (see also McKenzie (1986)), we can get a price support 
{pt}r of the ‘zero program’ {O},“, with Po=pO=P. Now, following the analysis of case 
(ii) (identifying period Twith period 1), we obtain a price support {pl}: of {O},“, such 
that P: 5 y for t>O. 
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Proof of Lemma 1. Given A, we can find UEZ such that Ac[u,<]. Denote V’(u) by CL. 

Without loss of generality, suppose y>x. Then (P - Q)(y - x) 5 P(y -x) < 

V’(X)(Y -x) L V’(U)(Y -X) = p(y -.X). 

Proof of Lemma 2. Given A, we can find UEZ such that A c [a,<]. Denote V(u) by p. 

If the Lemma were not true, there would exist a sequence (ti,yy”), s = 1,2,. ., with xs. yS~A 

and Ixs-ysI>& for all s, such that (P’-@) (y”-x’)+O as s+cc. 

Using Proposition 2(i), 0 < P” < Vi_(Y) < V’(u) = p, and similarly, O<@<p, so we 
can find a subsequence s’ of s, such that PSI + P, p’ + (2,2’ --f X, ys’ -+ J as s’+co. 

Denoting (j + X)/2 by 7, and using Proposition 2(i) again, V(Y) - P’a? > V(Z) - P’Z for 
all s> 1. By continuity of V, V(X) - k? > V(Z) - kj. Similarly, V(j) - & > V(Z) - &. 

Since j x7’ - y’ )> E for all s’, we have ) X - j I> E. Thus, using strict concavity of V 

we get V(Z) > [1/2)V(X) + (1/2)!(j). Thus V(X) -k > (1/2)V(;) + (1/2)V(y)- 
(1/2)PY - (1/2)Py, so that V(X) - Pi > V(y) - Py. Similarly, V(y) - Qj > V(X) - Qi 
Adding up these two strict inequalities, (P - a)(? - X) > 0. 

But, since (P”’ - @‘)(y”’ - a?‘) --+ 0 as s+cc, (k - g)(j - X) = 0, is a contradiction, 
which establishes the result. 
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